Recombination Dynamics of a Human Y-Chromosomal Palindrome: Rapid GC-Biased Gene Conversion, Multi-kilobase Conversion Tracts, and Rare Inversions
نویسندگان
چکیده
The male-specific region of the human Y chromosome (MSY) includes eight large inverted repeats (palindromes) in which arm-to-arm similarity exceeds 99.9%, due to gene conversion activity. Here, we studied one of these palindromes, P6, in order to illuminate the dynamics of the gene conversion process. We genotyped ten paralogous sequence variants (PSVs) within the arms of P6 in 378 Y chromosomes whose evolutionary relationships within the SNP-defined Y phylogeny are known. This allowed the identification of 146 historical gene conversion events involving individual PSVs, occurring at a rate of 2.9-8.4×10(-4) events per generation. A consideration of the nature of nucleotide change and the ancestral state of each PSV showed that the conversion process was significantly biased towards the fixation of G or C nucleotides (GC-biased), and also towards the ancestral state. Determination of haplotypes by long-PCR allowed likely co-conversion of PSVs to be identified, and suggested that conversion tract lengths are large, with a mean of 2068 bp, and a maximum in excess of 9 kb. Despite the frequent formation of recombination intermediates implied by the rapid observed gene conversion activity, resolution via crossover is rare: only three inversions within P6 were detected in the sample. An analysis of chimpanzee and gorilla P6 orthologs showed that the ancestral state bias has existed in all three species, and comparison of human and chimpanzee sequences with the gorilla outgroup confirmed that GC bias of the conversion process has apparently been active in both the human and chimpanzee lineages.
منابع مشابه
A Model-Based Analysis of GC-Biased Gene Conversion in the Human and Chimpanzee Genomes
GC-biased gene conversion (gBGC) is a recombination-associated process that favors the fixation of G/C alleles over A/T alleles. In mammals, gBGC is hypothesized to contribute to variation in GC content, rapidly evolving sequences, and the fixation of deleterious mutations, but its prevalence and general functional consequences remain poorly understood. gBGC is difficult to incorporate into mod...
متن کاملBiased gene conversion and the evolution of mammalian genomic landscapes.
Recombination is typically thought of as a symmetrical process resulting in large-scale reciprocal genetic exchanges between homologous chromosomes. Recombination events, however, are also accompanied by short-scale, unidirectional exchanges known as gene conversion in the neighborhood of the initiating double-strand break. A large body of evidence suggests that gene conversion is GC-biased in ...
متن کاملGene conversion tracts from double-strand break repair in mammalian cells.
Mammalian cells are able to repair chromosomal double-strand breaks (DSBs) both by homologous recombination and by mechanisms that require little or no homology. Although spontaneous homologous recombination is rare, DSBs will stimulate recombination by 2 to 3 orders of magnitude when homology is provided either from exogenous DNA in gene-targeting experiments or from a repeated chromosomal seq...
متن کاملGC-Biased Gene Conversion in Yeast Is Specifically Associated with Crossovers: Molecular Mechanisms and Evolutionary Significance
GC-biased gene conversion (gBGC) is a process associated with recombination that favors the transmission of GC alleles over AT alleles during meiosis. gBGC plays a major role in genome evolution in many eukaryotes. However, the molecular mechanisms of gBGC are still unknown. Different steps of the recombination process could potentially cause gBGC: the formation of double-strand breaks (DSBs), ...
متن کاملA fine-scale recombination map of the human-chimpanzee ancestor reveals faster change in humans than in chimpanzees and a strong impact of GC-biased gene conversion.
Recombination is a major determinant of adaptive and nonadaptive evolution. Understanding how the recombination landscape has evolved in humans is thus key to the interpretation of human genomic evolution. Comparison of fine-scale recombination maps of human and chimpanzee has revealed large changes at fine genomic scales and conservation over large scales. Here we demonstrate how a fine-scale ...
متن کامل